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We discuss upper bounds for density matrices for a particle, that occur in 
potential theory, and as a result of averaging over other degrees of freedom. The 
Weiner path integral representation is used. A basic technique of Symanzik is 
generalized in a variety of ways to a series of sharper upper hounds. There are 
distinct ways of applying the technique to the two-parameter integrals that 
describe averaged density matrices. A single-parameter application of the Sy- 
manzik technique leads to a temperature-dependent potential problem. The 
nature of the bounds is illustrated for two-parameter integrals by studying a 
soluble quadratic action, a one-dimensional delta correlation function action 
and shell correlation functions. The dependence on dimension is studied in the 
latter case. 

KEY WORDS: Upper bounds; path integrals; density matrices. 

1. INTRODUCTION 

The present paper treats the problem of finding upper bounds (UB) for 
density matrices. We use the path (Wiener) integral representation. The 
integers are of the form 

(Xl l / ( /8  )IX2> = (X'DBxexp[ A (18)] (1) 
d x  2 

Here, 

1 (x,[  dx Zdu ] 
DBx = | B x exp - ~- 3x2 I -d-flu ] I 

i.e., we use Wiener measure. 

(2) 
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For a particle subject to a time-dependent potential, -q~(x I t), we have 

A (/3 ) = fo %(x(u), u) au (3) 

we refer to u as the "time" variable and to A (13) as the "action." For a free 
particle the action is zero. 

Our main interest is in the study of "two-time" actions, when A (/3) 
has the form 

1 ~ ~ u'] dudu' A (/3) = -~ fo fo WE x(u) - x(u')Ilu - (4) 

This type of action arises in the problem of a particle subject to random 
potentials, after one performs the average over a Gaussian distribution. 
W(x) is the time-independent correlation function and is positive and short 
range in the simplest situation. An explicitly time-dependent, positive, 
W(x I[ u) appears in the path integral formulation of large polaron theory. 
The case where W(x)< 0 appears in the continuum formulation of the 
excluded volume polymer problem. There,/3 is the lengthof the chain and 
x(u) is the position of a point that is u units along the chain. 

Our analysis consists of elaborations, generalizations, and applications 
of a key idea due to Symanzik. (~) Most of the results apply to explicitly 
time-dependent actions. However, to keep things simple, we restrict our- 
selves to the time-independent case. Symanzik's approach has been dis- 
cussed by Bruch and Revercomb, (2) Lieb, (3) and Simon. (4) 

In Section 2 we review the application to potential theory. There are 
two types of UB, referred to as the weaker and stronger bounds. For both 
of these we introduce a set of sharper bounds that are denoted as 
multipoint or N-point bounds. As N-~ m the bounds approach the exact 
result. However, none of the bounds are accurate to order ~2. We show 
how to use the integral equation obeyed by I(s) to achieve this. In addition 
we comment on the use of trial actions to improve the bounds. 

In Section 3 we apply Symanzik's technique to double time bounds, 
where both u and u' variables are subjected to the Jensen inequality. These 
bounds and their multipoint generalizations are rather weak. For example 
they are infinite when W(x) is a one-dimensional delta function. They 
feature correlation functions for the free action. 

In Section 4, we study single time UB, based on treating only one of 
the time variables by the Symanzik technique. The results are much more 
interesting. First we treat the action symmetrically in the time variables. 
The UB are determined by a t-dependent potential q~(x)= flW(x)/2. 
Second, we show that there is an alternative, asymmetric decomposition. 
Here the UB involves a potential with twice the strength, viz., ~(x) 
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= flW(x).  For W(x) > 0 the symmetric bound is shown to be sharper. For 
both types of bounds we derive the N-point improvements. 

In Section 5 we consider the problem of obtaining bounds that are 
accurate to order W 2. This is done with the hierarchy that links correlation 
functions. One needs bounds for the correlation functions. These are 
obtained easily, but the results are complicated. 

In Section 6 the nature of the results is illuminated by comparison with 
the exact answers for a soluble two time quadratic action. A brief compari- 
son is made with the corresponding lower bounds obtained by using a 
single time harmonic trial action. 

Section 7 is concerned with the one-dimensional delta function correla- 
tion function (white noise) W(x) = Vo6(X ). For fl >> 1, the symmetrical UB 
has a dominant exponential involving a term proportional to V2fl 3. This 
comes from the single bound state. However, the coefficient is three times 
larger than the exact result. For fl << 1 the long spatial tail due to the bound 
state is washed out by interference from the distorted continuum states. 

In Section 8 we examine shell potentials located at unit distance from 
the origin. For V 0 fl >> 1 the results for all dimensions are similar to those 
for one-dimensional delta function. For V 0 fl << 1 the weak bound state in 
two dimensions leads to nonanalytic contributions, not recoverable from 
the perturbation series. We note that for fl >> 1 the partition function has a 
different dependence for shell correlation functions than it does for poten- 
tial hole or smooth correlations. The shell functions behave like the 
one-dimensional delta function, with an exponential dependence on V~fl 3. 
For the less singular correlation functions, the dominant exponential is 
proportional to V 0 ft. The bound states have eigenvalues with a leading 
term proportional to the strength of the potential. 

2. POTENTIAL THEORY 

First we consider bounds involving the free action. Let 

A (s) = foS~(x(u)) au (5) 

We need the free particle density matrix in e dimensions 

(xl[oo(s)lx2) = ( ~ ' D , x =  (2~rs)-'/2exp ~Zs (6) 
~'X 2 

Let 

A x -  (xlloo( )lx2) (7) 
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so that 

Gross 

s = 1 (7') 

Feynman's lower bound (s) is based on Jensen's equality when applied to 
A x. It is 

(xllI(s)[xa) > (x,lpo(S)lx2)exp[ s ) ] (8) 

the operation fX'2D~x applied to a functional occurs so frequently that we 
use the notation 

( XllI (s)tx2) =-- s xF(s) --) E* F(s) (9) 

Here, the end points of the integration and the range of the E* operation 
can be read in the quantity on the left-hand side. 

Symanzik's weaker UB is based on an application of Jensen's inequal- 
ity to the u integration (with weight l/s). Since I(s) has the u integration in 
the exponential, one gets an UB: 

ls s exp[ seo(x(u))] > exp[A (s)] (10) 

(x,]l(s)t.xz) <<. E*s s -~E exp[a~(x(u))] ( l l )  

To obtain an explicit result, insert, for each u 
I 1 '  

1 = JS(x(u) - z) dz (12) 

<x,Lz( )txz> E* f a z  8(x(u) - 
J O s d  

<<.s f (xllOo(S-u)lz)exp[sO(z)](zloo(u)lx2)dz (13) 

One finds the Golden-Thompson (6) bound for the partition functions 

z ( , )=  f ax,<x,ll(.)l,,,> <. f a.exp[,,(z) ] (,a) 

A much stronger bound for the partition function has been obtained 
by Barnes, Brascamp, and Lieb (7) for potentials that have all discrete 
status. We are, however, interested in functions ~(z) that are short range, 
such that flq,(z)l dz is finite. Our concern is with the density matrix. 

One can find a sequence of sharper bounds by writing 
N 

l i~=os (15) fo ,( x ( u) ) du = 
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and applying the Jensen inequality separately on each U i variable. Then 

<x~[/(s)lx2> <. E* an, . . . . .  exp ~ O ( x ( u , . ) )  (16) 
s 

Introduce the local "density of paths" 

c(z I~)= • fo s'~(x(u)- z)du, fc(~ [,)d~= 1 (17) 
Then, 

(x,lI(s)lx2>= E*exp[sf C(zls)q,(z)dz] (18) 
The UB is, for any N 

(XI[/(S)IX2> ~ E*{fdzC(zls)exp[ ~(z)]} u (19) 
This views the UB from the z integration viewpoint with C(z Is) as the 

weight function. By the properties of means, (s) the bounds for large N are 
sharper. In fact, for large N 

Nlog{fdzC(z)exp[ ~,)(z)] } 

- -  Nlog 1 + ~ S2 l fc(z)~2(z)az+... } 
N 2 2! 

(20) 

As N ~  oo we obtain the exact result sfc(zls)eo(z)dz. The cumulant 
expansion is obtaihed by putting N = 1 after expanding the logarithm. 
However, one loses the UB character when one stops at a finite number of 
terms. 

While we have a sequence of sharper bounds, no one of them gives the 
exact second-order term in an expansion on q~. The exact result is 

s f f <xllC(zls)C(ZllS)rX2>~(z)~(<)dzdzl (21) 
where 

( x , lC(z  I s)lx2) = E*C(z  Is) (22) 

The N center approximation gives 

2--~(N N dz(xl]C(zls)]xz}O:(z)  + 2 

x f (xllC(zls)C(ZllS)lX:)eo(z)eo(z,)dzdz,} (23) 

which is exact only as N--> oo. 
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Note that for ~(z) > 0 one can get UB accurate to ~2 by using the 
integral equation 

(x,lt(t)lx2) = (x,lOo(t)lx2) + fotd~ f <x,loo(t - s)lx3b~(x3)(x3]Z(s)lx2) dx 3 

(24) 

Upon insertion of the UB for I(s) on the right-hand side, the UB is 
accurate to ep 2. If ff is < 0 the UB gets converted to a lower bound. 

We note a curious point for the case of one dimension. If ~(z) ) 0 with 

=fe~(z)dz one can view r o as a weight for the z integration. This r 

gives 

(xl,l(z)]x2) << E* f ep(z)dzexp[,C, O foSS(x(u)- z)du I (25) 

This is a superposition based on the known density matrix for a one- 
dimensional delta function. There is the obvious multipoint extension. 

We consider next the sharper of Symanzik's UB. The integral can be 
scaled as 

(XIII(s)[X2)=S-e/23x2/fsfxl/~ D I xexp[sfoX~'(~x(u)) j (26) 

so that we can recover I(s) from I(1). For s = 1 the bound is 

fx~'D~xexpl folep(x(u))du] < exp[ folln(xl[Bl(u)]x2)du] (27) 

where the key quantity is the function 

(XllBl(U)lx2) = fx~lDlX exp[ ~b(x(u)) ] 

= ;dg(XllDo(l - u)[z)exp[eo(z)]. <ZlOo(U)lX=) (28) 

Here the role of the u integration is more pronounced. 

] 
follows from the Jensen inequality by taking Bl(u ) = exp[A (u)]. 

We can establish a multicenter generalization of this inequality. Let 

f [lii, ] (xl]BN(u ~ . . . . .  uN)lx,) = X'DlXeX p ~ eO(x(ui) ) (30) 
,,,'X2 

Let 

N * ( X ( U , ) )  

g ( u  . . . .  , uN) = N,  U 
i = 1  

ln<x,[BN(ui.., uN)lx2) (31) 
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and use this in 

< fol.., foldui.,, dus. exp[ g(ui.., us-)] 

Then 

(32) 

2 

The UB can also be combined with trial actions, as shown by Syman- 
and used by Bruch and Revercomb. Suppose the trial action is zik 

)tf~eor(x(u)) du, with ~r(x)  having a prescribed functional form. The simple 
UB is 

(xlll(1)x2) ~ E*exp[)t fol~r(x(u)du ) J f dz C(z)exp[r  )tqsr (z) ] 

(34) 

Of course, if ~epr(X ) --q~(x), the UB is exact, so that if the trial is 
"near" to if(x), the UB should be sharper than that based on the free 
action. Practically, we are more interested in whether there is improvement 
for IXl < l, for rather general fir(x). The answer is yes, provided the path 
integral is finite for the chosen e~r(x ). For, one may compute the change in 
the bound to first order in ~. Whatever its value, one may choose the sign 
of ~ to decrease the bound. On the other hand, the expression is always 
positive, so that a lowest value is reached for some ~. 

. DOUBLE TIME BOUNDS 

We now consider path integrals of the type 

1 (  ;oTo  cx u -x u' J u u ') 
Scaling to the Debroglie length Vr-fl, we have 

-,/2 x,/(~ D <x,ll(B)lx2) = B f~ l Y  x2/r 

>< exp ( 8 2 1 1  ;oo ;oo 
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It suffices to evaluate I(1)and to make the replacements W(z) 
fl2W(z~f-fl), xl ~ xl/'f-fl, and to supply the overall factor fi -,/2. Trans- 

lation invariance implies, in addition 

(x,lI(1)lx2) = ( x , -  x21](1)lO) (37) 

Consider the UB that come about by treating both the u and u' 
variables according to Symanzik's idea. In addition, work with the free 
action. Then 

(ylI(1)10) < E* foldu foldU ' exp[ �89 W(x(u) - 

X ( U ' ) )  ] (38) 

This involves free particle correlation functions: 

<xilgo(z)lx2) = g* (~ ( ~ ( x ( u ) -  x (u ' ) -  z)dudu' (39) 
�9 ,'0 ,-'0 

Then 

(y[I(1)lO) = fdz  (yiKo(z)lO)exp[ W(z) ] (40) 

For y = 0 we have 

2'-1 fo~176 + xZ)'-3/2exp[-2z2(1 + x2)] (41) (01K0(z)10)- (27r),/2 

In particular, for e = 3 we have the simple expression 

(01Ko(Z)10 > = (2rr)-5/2exp(-2z2)/lzl (42) 

The expression diverges as z--~0 for e > 1. For e = 2 it goes as ln(lglz[). 
For e = 1 it tends to the finite value 1/4. For large [z[ it goes as e -2z/[z[ 
for any dimension. 

Another way to obtain this bound is to write [with C(z) -- C(z[ 1)], 

[ - lffdzdz, C(z)C(z + z,)W(z,)] (43) (ylI(1)10) = E* exp, 
k 

Note now that 

is normalized to unity: 

~(Z) ~;C(z l )C(z  "4" z l )dz  I (44) 

f. j(b(z) dz = 1 (45) 

�9 (z) can be considered as a weight for the z integration. This viewpoint is 
useful in calculations, and the results can be justified by going back to the u 
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integrations. We have 

<<. E*Cdzexpl W(z) ---5- 1 (y[I(1)[O) 
d [ 

and 

(46) 

foYD~x rb(z) = (y[Ko(z)lO) (47) 

The generalization to a multipoint bound is immediate. It is 

(ylI(1)lO)<E*(f~b(z)exp[ W(z) dz) N ] (48) 

This is less than the single point bound for any N > 1, and in the limit 
N ~  ~ ,  we find the exact expression. 

The stronger double time Symanzik bounds can easily be derived (as 
he already noted) by following the argument used in potential theory. 

There is an elementary way of improving the UB so that it is accurate 
to order W 2. For any action A, we introduce a coupling constant g. We 
have the identity 

- 1 = fo ldgAe gA exp(A ) (49) 

The UB procedure is applied to the last term and one operates with 
E*. For the double time UB this leads to 

• E* [ ] (50) 

4. SINGLE T IME BOUNDS 

The bounds of the previous section are rather weak. They involve 
free-particle correlation functions. For example the bound is infinite if 
W(x) is a one-dimensional delta function. Hence, we do not discuss 
improvement by the techniques described in the section on potential 
theory. 

A more powerful result is obtained if one works on only one of the 
time variables. Thus 

(.v[I(1)J0) < E* foolduexpl 1 folW(x(u ') - x(u))du'] (51) 
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Inserting, for given u, 1 = f6(x(u) - z)dz 

l s  z)du' t (y[I(1)[0)  < E * s  z)exp[ 

<~ E*f dzC(z)exp[ l f W(Zl)e(zl+Z)dzl] ( 5 2 )  

Naturally, this can be obtained by using C(z) as a weight for the z 
integration. 

We need the potential type of density matrix 

[ (yl[R(s)ly~) = E* exp[ 

Here the potential is centered at the origin. Then 

< dzs  zlR(1 - s)lO)(OIR(s)Lz)ds CA) (Y[I(1)lO) 

<~f d-~k.,exp(-iky)R(-kll-s)fi(kls) (54) 
( 2 ~ )  " 

in terms of the spatial Fourier transform. 
In particular, for y = 0, we have the simple result 

(A') (0lI(1)lo > = (0IR0)I0 > (55) 

(A) and (A') are the most useful results of the UB analysis. The 
generalization to a multipoint bound is immediate. It is 

(yl(1)[O)<E*(fdzC(z)exp[fC(z+zl)W(z~)dzff2N]} (56) 

We now need an N-center single-particle density matrix 

(ydRu(zi, ZN II s)ly2) = E* exp 
i = 1  

The bound is 

• (yIRN(zi  . ' .  z~v II 1 -- uOlz,) 

X (ziIRN(Zi... Z N1[/.41 - -  / ' / 2 ) 1 S )  �9 " "  

x <z , , IRn(~ ,  �9 �9 �9 zN LI uN)10> 0 8 )  

Note that the z,. variables enter both into the end points of the matrix 
dements and as the values of the centers of the potential. So this is not 
simple matrix multiplication. 
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We refer to the preceding as symmetrical bounds. There are other, 
asymmetrical, ones. A second type is based on writing the action as 

1 fold•foldutW(x(u)-x(ut))=fooldufooUdUtW(x(ul)-x(u))(59) 
Again, we insert a delta function in the path integral 

<y[I(1)[O)<E*fo'dufdz~(x(u)-z)exp[fo"dU'W(x(u')-z)] (60) 

This involves the same type potential as in the symmetric case, but 
with double the strength. To avoid confusion we use the separate notation 

In decomposing the expression, note that the stretch from 1 to u 
involves the free-particle density matrix. 

(x,[/(1)[0) <fdzfoldUl <XllO0(1 -- u)[z)<z] Ql(z I u)10) (B) (62) 

The generalization to N = 2 is 

( x , l / ( 1 ) ] 0 )  < 2fdz2fooldulfdU2 <y,lp0(1- Ul)lgl)<gllRl(gllUl- U2)IZ2) 

X <g21 Q2(z1, g 2 [ U2)[0 ) (62') 
Here 

( 1 fo" [ W(x(u')-z,)+ W(x(u')-z2)]du' } <~=r O~(z~,z= l . ) io> = E* exp t 

(63) 

We now examine the relation between the two types of bound. The (B) 
form comes from 

O0 

<oI~(I)IO> < e* E ("au,fU'au2 . . .  
n=OdO JO 

W[ x(u,) - x(u)]  . . .  W[ x(u.) - x(u)]  (64) 

The 1/n! from the exponential is canceled by the n! arrangements. 
This is 

<OlX(l)lO> < E* (~ + I)! 

Since 

1 1 1 < - -  
2n 2! (n + 1)! 
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we have the result that for W > 0, the (A) bound is sharper. On the other 
hand for W < 0, there are alternating signs and we have no conclusion. 

5. USE OF HIERARCHY 

By an argument like that used in potential theory, one sees that the UB 
do not give the W 2 terms of perturbation theory correctly. To get bounds 
which do agree, we need bounds for correlation functions. 

There is a hierarchy linking (xllI(t)lx2) to correlation functions. It is 
derived by the standard integration by parts technique used in path integral 
theory. (4) Here we write 

t 
exp[A (t)]  - exp[ A(0)]  = fo ds ~s exp[A(s) ]  

.s  0 A ( s )  
=/0  d s ~ e x p [ A ( s ) ]  (66) 

We apply this to 

A ( S )  : [" [4JoSd~[JoSlW(x(S,) -- x(s2)) ds2 (67) 

This gives the first hierarchy equation 

(x,lI(t)  - po(t)[x2) = S fotds/ (x,lpo(t - s)lz ) dz W(y  - z)(z lI , (yl  s)[Xz) 

(68) 

where 

(ZIII(.,V I S)IX2) = fxlDsx C(y l s)exp[ A (s) ] (69) 

If W > 0, an upper bound for I i (y ls  ) yields an upper bound for I(s). 
To derive such a bound, we first use C(zls) as a weight for the z 
integration. This gives the symmetrical UB 

[ (x,lI(y{s)[x2> < E* C(y[s) f dz C(z I s)exp[ 

(70) 

We now need a density matrix 

(xdPt(zls)lx2)=- E* exp[ ~ foSW(x(u) - z)du] (71) 

evaluated at t = s. Note that PI(0[ s) = R(s), P2(OI s) = Ql(OI s). 
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One finds the bound 

(xOl~(y l s)lx2) < (s du ( u  du dz [ (x~lPs(z Is - u) ly)(yles(z  [ u - u')lz) 
J0 s .)0 s 

x <zlPs(z I u')lx2> + <x,les(z Is - u)lz> 

x Ol&(z  In - u')ly><yles(z I u')lx2>] 

(72) 

The hierarchy equations are usually treated by Laplace transforms on the 
time variables. The dependence of the strength of the potential on the s 
variables then leads to severe complications. 

The second, asymmetrical technique may also be used to evaluate the 
correlation functions needed for the first hierarchy equation: 

(xdl l (yls)[x2)  <. E , s  s du (~ dug -7- Jo - 7  ~(x(.2) - y)~(x(u) - z) 

X e x p [ s s  (73) 

The action now has twice the strength of the previous action: 

< x,l,t,(y l s)lx~> 

fsd. s f da[ (Xl]PO(8 - U)]Z) X (z]P2s(U--U2)[y > < 2  
J0 s 

x<y le=. (= 1.91x2> + <x,Ipo(S - u)ly>, 

x < y l e = , ( z l u -  u=)l=><zlp=,(=luglx=>] (74) 

Note that one of the factors is the free-particle density matrix. 
Naturally, this can easily be generalized to the multipoint bounds. But 

the practical value is doubtful. 
Finally we note that for the one-dimensional case, if W(z) is > 0 and 

W o = f W(z)dz is finite, we can use W ( z ) / W  o as a weight for the z 
integration. Then we have an upper bound based on a superposition of two 
time delta function actions. 

To obtain bounds accurate to W 2, we can also use the coupling 
constant integration. Then 

• g f  W(~:-z )r  (75) 

This also involves three Pg factors. 
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6, TEST OF BOUNDS ON SOLUBLE CASE 

To examine the nature of the upper bounds, we study the soluble 

_~2 
A ( f l ) -  4 foo#L l~[x(u)-x(u')]2dudu' (76) 

(y~lI( fl I f~)ly2) = E* exp[A ( fl )] (77) 

From the translation invariance of A (fl), the value of I depends only on 
the difference Y l -Y2. For the one-dimensional case, scaling to the thermal 
deBroglie length yields 

(y[I(11 f~)10 > = t3 -~/2(y/,[-~ ii(11 a/33/=)10) (78) 

so that it suffices to evaluate (y[I(11 f~)[0). 
The action A (1) can be written as 

(;0' ; -a2 [lx2 du+ xdu (79) A(1)- 
2 Jo T 

Using a parametric representation for the exponential of the last term, and 
the theory of the forced harmonic oscillator, one finds the exact result (9) 

1 ~ / s inh_~  )exp f _7~ (coth ~ )y2 ] (YlI(1 la)10) -- 2--~--~ ( -f (80) 

Consider first the case y = 0. The single point symmetric Symanzik UB 
is (with ~o = fl/,/2) 

<011(1 l a)10) < ~ ( o~ 1/2 (81) 

In the limit ~0 ~ ~ there is a discrepancy for both the dominant exponen- 
tial and for the prefactor. 

It is also possible to calculate the two point UB. We find 

(011(11 a)[0 ) < allan (1 - u) dz (z[o(l - u I,o)l- z> 

{ ~2Z2 
• (zlo(u[o~)[- z)expt _ z ~ )  (82) 

p(u[~o) is the density matrix for an oscillator of angular frequency ~o. 

action 
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Carrying out the z integration, one finds 

(0[I(1 ] f~)[O) < 2( ~ )V2s u)[ ~ sinwu sinhw(1-  u )+  sinhw 

+ sinhwu + sinho~(1 - u)] -1/2 

(83) 

In the limit of large oa, the contribution from the ground state dominates, 
and 

(01I(1 1 a)lO) <( 1 )1/2 ~r 1 + o~/4 exp(-w/2)  (84) 

The improvement is only in the prefactor, and not in the dominant 
exponential. The N---> m limit (for fixed o~) must be taken to get the 
exponential term correctly. For given, large N, the accuracy decreases for 
sufficiently large o~. 

The asymmetrical one-point UB is less sharp. We have 

(01I(1 ] f~)0) < ( ~  )1/2s {sinhf~u[1 + ( 1 -  u)~cosh~u]) -1/2 (85) 

For large a this has an inverse power behavior. This is true for the 
weaker, double time bounds. 

For y =~ 0, the symmetrical one-point bound is 

( ) ~ w  [-~0Y 2 coshwu ] <',-~sinhw.1/2.,ulduexp 2 coshw(l C ~) T coshwu (y[I(1 [ f~)[0) 

(86) 
When w ~ ~ the exponential fall off, exp(-~0y2/4), is slower than the 

exact result, exp(-w~/'}-y2/4). 
For this soluble action, the lower bounds are more accurate. (9) Since 

_~2 s du (87) A (1) --T- 
(0[I(1 l a)[0 < (a/2~r sinh a) 1/2 (88) 

This has the correct exponential term, but an incorrect prefactor. When the 
prefactor is put into the exponential, this translates to an incorrect coeffi- 
cient for the log f~ term. The use of the Jensen inequality with the oscillator 
action leads to a better lower bound. There is an extra positive term in the 
exponential. This term is 

w---~ 2 du,)2exp ( --s 2 s163 Ix(u') ~s (89) 
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For large o~ this leads to an ~0 correction and thus does not affect the 
logarithmic term. 

7. THE ONE-D IMENSIONAL DELTA FUNCTION 

In the present section we examine the two time action involving a 
one-dimensional delta function, viz., 

(ylJ(1)lO)= E*exp[ ~ fol folS(x(u)-x(u'))dudu' 1 (90) 

As noted earlier, the double time UB is infinite. The symmetric single 
time UB is for y = 0 

[ u folS(x(u))du] =--- (O[R(1)[O~ (91) (01J(1)10) < E*exp -~ 

Explicitly 

(0[J(1),@ ~< 22~-1 + 43' exp (3 ' 2 /8 )e r f c ( -_~ )  

2 erfc(z) = ~ -  f~Odtexp(3'2) (92) 

As 3'-~ oo 

1 2 exp (93) <01s(1)to) < ~ + y 

The first term is the free-particle contribution. The second term is the 
contribution from the bound state for a particle in an attractive delta 
function potential. The energy is E 0 = - �89 (3'/2) 2 and the wave function is 

X0(X) = q ~  exp( - Ix l3 ' /2  ). The distortion of the continuum states is a 
correction to the dominant term. One knows, from lower bound esti- 
mates, (9) and from systematic asymptotic theory, that for T ~  oo, the 
exponent-is 3,2/24. So there is the same dependence on T, but the coeffi- 
cient of the upper bound is larger by a factor of 3. For T ~ 0 ,  J(1) has an 
expansion in powers of 3'. In accord with the general analysis the first 
power of T is exact and the second power of 3' is too large. 

The asymmetrical upper bound is 

<0[J(1)[0) <fooldUfaz (01po(l - u)[z)(z[ Q(u)[O) (94) 

[ folS(x(u))du] (95) <z I Q(u)10 ) ~ E* exp T 

One can use the integral equation obeyed by Q(u) to reach the simpler 
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form 

(01J(1)10} < ___1___1 + y Lldu(1 - u)1/2(01Q(u)lO ) (96) (2~)'/2 (2r ~/2 

In the limit of large y, (1 - u) 1/2 can be replaced by 1. The behavior is 
governed by the bound state with twice the strength, viz., exp(yZ/2). Again 
this is a weaker bound, in accord with the general analysis. 

We now examine the spatial behavior of the symmetric UB 

<y[J~(t)lO ) = f dZ fo'd~ <x + zlR(t  - s)[O}(OIR(s)lz ) (97) 

We take the Laplace transform 

(x, lR(p)lx2) = L~176 du (98) 

and use the convolution theorem. All transforms have the same p value so 
that we frequently suppress this argument. Then 

(ylYrlo} = fdz(y + zlKI0)(0lR[z) (99) 

For the one-dimensional delta function, 

<01~[z> = <01~otZ> (lOO) 
q-rl2  

<01~olz> = exp[ -Izl(2p)l/2]l(2p) '/2 (100') 

The Markov property, that for any s, 

f d x  3 (XllPo(t - s)lx3>Kx31Po(s)lx2> = (x~lPo(t)lx2} (101) 

become in transform space 

fdz <x, + zlMp)10><Ol~o(p)k> = ~ <Ol~o(e)lx,> (102) 

Hence 

- P  ~ <01~o(P)ly > (103) <yl/r(o)10} = ( q  _ y/2~_)2 

Using the table of Laplace transform inverses, (1~ and evaluating at 
t =  1, 

+ � 8 8  (104) 
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where 

H ( z) = exp( z2/2)erfc( z) (105) 

There is only a small change from free-particle behavior when x >> 1. In 
particular the long tail from weakly bound state for X < 1 is washed out. 
We will simply set down the formulas for the two-point UB. Here the 
two-center density matrix is 

[ + (xdg2(zpz 2 It)Ix2> = E* exp( 

Here 

The Laplace transforms needed are [q = (2/9) 1/2] 

< Z I I / ~ 2 ( Z 1 ,  Z 2 I/9)IZ2> "~" exp(-  qlz 2 - z l l) /  qA 

1 (1 - 4-~)exp[-qlz2  ] <~21~2(z,,z2 I/9)1o> = 

(106) 

(107) 

_ y ) 2 _  
A=(1 Tq q (�88 

2 7 1 e x p [ - q l z l l -  qlzl + z2l] (108) 

This is to be used in 

<OlJT(p)lO > = 2 !  ; f dZ 1 dZ2<01/~2(ZD Z2)iZI> 

x <zde-2(z~,z=)lz=><z=lg2(z,,z2)IO> (109) 
The evaluation of the inverse transform is difficult. 

, SHELL CORRELATION FUNCTIONS 
We first restate the content of the UB (A) and (A'). In ordinary units 

(y l I ( f l ) [0 )=E*exp[  1 B B - dudu' 1 10) fo fo 
We introduced 

( x lP t ( z l s ) , x )=  E*exp[ ~ foSW(x(u) - z)du] (71) 

Then (A) and (A') are 

<ylI( B)}o> <. -~ fo~d, f dz <y + zlP~(01B- s)10><01P~(,)lz> (111) 

4o1I( B)Io> -< <olP[ (Ol B)lO]> (112) 
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We now study these bounds for correlation functions W(x) = Vof(x ), 
ff(x) d~x = 1, f(x) >1 0 where the correlation length in f(x) is unity. We 
have a short-range attractive potential with a B-dependent strength. There 
is a significant dependence on dimensionality when Vofl << 1. There are 
bound states in one and two dimensions. (11'12) The behavior can be studied 
in detail for shell potentials and for potential holes. 

It is expedient to introduce 

(xI[Lx(s)[x2) = E* exp[)t foS f(x(u)) du ] (113) 

Here, when )t = VoB/2, Lx(s ) = Pr s). Then 

fl(y]l(B)[O} <<.foo~dsf dz (y+ z[Lx(B - s)lO}(OILx(s)lz} (114) 

The problems will be analyzed by taking the Laplace transform of 
Lx(s ). After taking the inverse, we set )t = V o B/2. 

The integral equation for the transform is 

< x ,lExlxz> = <xll olX=> + X f < X llToolx3>f( x3)< x31Exlx=> dx3 (I  15) 

In one dimension the transform exists even when x 1 = x 2 = 0. We 
consider the one-dimensional "shell" potential 

f (x)  = � 8 9  d(x + 1)] (116) 

We find [q = (2p) t/2] 

(xl/~x[0) - e x p ( -  q[xl) +Af t  [ e x p ( - q [ x  + 1[)+ e x p ( - q [ x -  1[)] 
q 2q 

(117) 

where 

If ~ << I there is a bound state at q = ~, p--~2/2. It contributes to 
/, exp(-~ + ~2a12) to (01L~(s)I0 }. However, this is contained in the pertur- 
bation series in powers of ~. On the other hand, ~ >> I the bound state is at 
q = x/2, p = �89 (U2) and 

I + X e - % x p ( - ~ ) +  . - .  (0[L(s)[0) --) (2~rs),/2 (119) 

One can verify that the dominant term comes from the bound state 
which is determined by the condition 

q(1 + tanhq) = 7~ (120) 
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To study the spatial behavior of the UB one must examine 

fexp(-ikx)lE(k)L 2& (121) 

Here 

"-- P + lk2/2 ff] [1 + Xcos(k) �9 (122) 

The approach to the one-dimensional delta function is to put cos(k) 
and the exponentials in ff equal to unity. The most important question is 
the contribution of the bound state to the spatial behavior. For large Ix I we 
may put cos(k) equal to unity. Let F(s) and F:(s) be the Laplace inverses 
of F(p)  and [if(p)]2. Then we may use the convolution theorem. 

Mx(x I t) = (2r  xZ/2t) + 1 
(2 r) '/2 

• s  _ s),/2exp( - x 2 2~_-sl )ds[2XF(s) + X2F2(s)] (123) 

The way in which the contribution of the bound state is washed out by the 
free-particle factor is a general feature. 

Consider the two-dimensional shell potential 

f(r) = ~ 8 ( r -  1) (124) 

We use the partial wave decomposition 

1 
(xll/~lx2) - (2~r)2 m__~ ~ (r,lEm[r2)exp[ im(~l - q~2)] (125) 

and the same decomposition for Po. Then 

(r,lP0,mlr2) = 4~rI,,(qrOKm(qr2) if r~ < r 2 (126) 

in terms of modified Bessel functions. The solution is 

(rxlT~mlr2 ~ = (rll~O,mlr2) + ~k (r,lpo,m[l~(llpo,mlr) (127) 
2--; [i  

The bound states are given by the solutions of 

1 = 2Mm(q)K,~(q) (128) 

There is at most one bound state for each m. It exists, for m = 0, even when 
X---> 0. Then 

p---->p* --> 2 exp( - 1/X - 2,/*) (129) 

where ~,* = 0.5772 is the Euler constant. This nonanalytic contribution is 
not recoverable from the perturbation series in X. 
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with 

For  r 1 = r 2 < 1 and  rl---~0 , the only m = 0 te rm contr ibutes:  

1 / 7~2 
) 

(130) 

Ko(Tk ) ---> (~r/2~)t /2exp( - )~) (131) 

W h e n  r I or  r 2 5 ~: 0, the m ~ 0 states contribute.  For  large )~ the bound  
states differ f rom the m = 0 state by  an a m o u n t  independent  of )~. Thus  
they contr ibute  to the prefac tor  of the dominan t  term. To  determine the 
spatial  behavior  of the UB for  the original two t ime Wiener  integral, we 
need to s tudy the space and  t ime convolutions,  as sketched for  the one- 
dimensional  shell case. W e  have  not  studied this in detail. 

Another  case that  can  be done  is a correlat ion funct ion that  is cons tant  
over  a small range, i.e., a potent ial  well of depth V 0. There  is an  impor tan t  
difference in the )~ >> 1 limit. For  deep potent ia l  wells the low-lying states 
have  eigenvalues given by  the depth of the well plus the eigenvalues of a 
particle in an  infinitely high box. For  example  in the one-dimensional  case 

) ( -n2~r2t )exp(M)  (132) (OILx( t ) lO~o  2 ~,, sin2( ~-~ exp 2 
n = 0  

Th sum is over  all states whose eigenfunctions are nonvanish ing  at  the 
origin. The  leading term has an exponent ia l  dependence  on X ra ther  than  
on ~t 2, as was the case for  the more  singular shell potentials  and  one- 
dimensional  delta function. Clearly this feature  is independent  of the 
dimension.  The  limiting dependence  on X is also characterist ic of smooth  
correlat ion functions.  
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